KI übernimmt Arbeit von Software-Ingenieuren

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

KI übernimmt Arbeit von Software-Ingenieuren

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Wissenschaftler vom Softwaretechnik-Institut paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der Künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

Quelle: Softwaretechnik-Institut paluno

Wir leben in einer schnelllebigen, vernetzten Welt. Der Bedarf an selbstadaptiver Software wächst, also Software, die in der Lage ist, sich selbstständig an wechselnde Umgebungssituationen anzupassen. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der Künstlichen Intelligenz (KI) erzielt.

Nicht alle möglichen Umgebungssituationen vorhersehbar

Eine wesentliche Aufgabe bei der Entwicklung selbstadaptiver Software ist es vorzugeben, wann und wie eine Anpassung erfolgen soll. Das ist jedoch schwierig, weil die Ingenieure zum Zeitpunkt der Entwicklung meist nicht alle möglichen Umgebungssituationen der Software vorhersehen können. Dieser Herausforderung begegnet das paluno-Team der Universität Duisburg-Essen (UDE) mit Online Reinforcement Learning, einem Verfahren der Künstlichen Intelligenz. Die Idee dahinter: Die Software lernt selbst, welche Anpassung in welcher Situation die beste ist, indem sie Feedback zur Laufzeit sammelt und auswertet. Gute Anpassungen führen zu positivem Feedback, schlechte Anpassungen zu einem negativen. So lernt die Software durch Ausprobieren, möglichst gute Rückmeldungen zu sammeln. Damit übernimmt die Künstliche Intelligenz die bisherige manuelle Tätigkeit der Software-Ingenieure: festlegen, wann und wie eine Anpassung erfolgen soll.

„Bisherige Methoden des Online Reinforcement Learning haben jedoch noch einen Haken“, sagt Dr. Andreas Metzger, Leiter des Bereichs Adaptive Systeme bei paluno. „Die so genannte Explorationsrate muss manuell feinjustiert werden. Das ist die Wahrscheinlichkeit, dass die Software eine neue Anpassung ausprobiert, anstatt sich auf bekannte, sichere Anpassungen zu beschränken.“ Weil das auf Kosten der Automatisierbarkeit geht, setzt das paluno-Team einen neuartigen Lernalgorithmus ein: Dieser wird Policy-based Reinforcement Learning genannt und kommt ohne eine Feinjustierung der Explorationsrate aus. Erste Tests bei selbstadaptiven Systemen für das Geschäftsprozessmanagement und für Web-Anwendungen waren erfolgreich. Ihre Erkenntnisse wollen die Wissenschaftler nun auch für die Entwicklung von selbstadaptiven Transportmanagement-Systemen und Smart-Home-Systemen anwenden.

Dieser Artikel könnte Sie auch interessieren: KI erkennt Anomalien in industriellen Anlagen

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: SCM 2040

10 Megatrends für die nächsten 20 Jahre: Darauf müssen sich Supply Chain Manager einstellen

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.